堆高车厂家
免费服务热线

Free service

hotline

010-00000000
堆高车厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

小型卫生服务中心污水处理设备《资讯》

发布时间:2020-08-20 17:24:55 阅读: 来源:堆高车厂家

小型卫生服务中心污水处理设备

核心提示:小型卫生服务中心污水处理设备,专业的技术,先进的工艺,完善的售后;鲁盛环保,每时每刻,时刻准备着小型卫生服务中心污水处理设备

实验部分  1.1 实验装置  实验装置见图1,UASB反应器材质为有机玻璃,整体高度60 cm,其中反应区高度35 cm,内径6 cm,有效容积约1 L。内径外侧为可温控水套,温度控制为35 ℃。反应器外壁自下而上设置6个取样口,取样口的内径是10 mm。反应区上部设置回流管,回流液可经过循环泵重新进入反应器。进水由蠕动泵从反应器底部进入。  1.2 PTA废水及接种污泥  实际PTA废水成分主要为TA、PT、BA,和少量的邻苯二甲酸和间苯二甲酸等,以及其他促进微生物生长代谢的微量元素,见表1。根据上述芳香类化合物在实际废水中的比例,本实验模拟废水以上述芳香类化合物为碳源,调节废水COD为5 000 mg·L?1。PTA废水进入反应器之前通过调节NaOH和HCl将pH控制在7.5左右。模拟废水成分见表1。接种污泥来自于哈尔滨市太平污水处理厂A2/O工艺中的厌氧段。取样时厌氧段污泥为黑色絮状厌氧污泥,混合液悬浮固体浓度(MLSS)为8 900 mg·L?1,混合液挥发性固体浓度(MLVSS)为6 500 mg·L?1,对应的MLVSS/MLSS为0.73。接种污泥在进入反应器前静沉0.5 h,去除上清液。最终污泥接种量占反应器有效容积的60%。

1.3 实验方法  由于低负荷启动可减少反应器的污泥损失,降低抑制性物质的积累,因此本实验采用低负荷启动。在反应器启动过程中,采用逐渐提高进水负荷和减少HRT的运行方法进行。为快速提高接种污泥活性,第1阶段用葡萄糖代替模拟PTA废水作为碳源。随后往葡萄糖配水中逐渐加入PTA废水提高配水COD值,直至成分完全为PTA废水。启动过程按照PTA废水的比例分为6个阶段,见表2。在反应器进入下一个阶段之前,出水各项指标值达到稳定。在启动初期,通过内回流将进水流速提高至0.5 m·h?1,增加进水和底部污泥充分接触,去除系统中细小和老化污泥。当系统内产气量逐渐增多,可实现液体在反应器内部扰动,优化混合效果,此时逐渐减小回流量。BAF-SPDB工艺中BAF的最佳气水比为4 :1.在该气水比条件下, BAF和SPDB针对低碳源污水可同时获得理想的硝化和反硝化效果, 并且BAF-SPDB工艺对TN的去除率可达到91.6%.  (2) 宏观运行参数对BAF和SPDB处理效果的影响和微观微生物群落的动态变化直接相关.在BAF中, 氨氧化菌(Candidatus Nitrospira defluvii)和亚硝酸盐氧化菌(Nitrosomonas sp. Nm47)的组成, 数量与活性随气水比的变化直接决定了BAF中硝化效果的好坏, 而SPDB中固体碳源降解反硝化微生物Pseudomonas sp.、Myxobacterium AT3-03和异养反硝化菌Dechloromonas agitate, Comamonas granuli和Rubrivivax gelatinosus的群落结构随气水比的变化直接决定了SPDB中有机碳源的释放和反硝化效能的优劣.同时, Acinetobacter calcoaceticus、Acinetobacter sp.、Bacillus sp.和Thiobacillus aquaesulis等异养硝化和好氧反硝化菌也在系统中发挥重要作用精对苯二甲酸(PTA)通常被用在薄膜、增塑剂和聚酯类材料等的生产中,是我国重要的有机原材料。随着我国PTA产业规模不断扩大,PTA废水的排放量越来越多,由于PTA废水主要污染物为芳香类化合物(对苯二甲酸(TA)、甲基苯甲酸(PT)和苯甲酸(BA)等),一旦进入环境,将会造成严重污染。此外,如果该废水得不到切实有效处理,必将成为各个企业的发展“瓶颈”。因此,关于PTA废水的处理研究受到越来越多的关注。PTA废水具有有机浓度高,水质组成复杂、可生化性差、具有一定毒性等特点,这也是研究的难点。  由于厌氧生物技术具有承受高有机负荷、剩余污泥产量少、能源回收率高等优点,是目前处理PTA废水的研究热点。目前主要的厌氧工艺包括上流式厌氧污泥床(UASB)、厌氧生物滤池(AF)及厌氧内循环反应器(IC)等。JOUNG等采用AF反应器处理PTA废水,实现了连续15个月的稳定运行,COD去除率均达到85%以上。KLEEREBEZEM等在利用UASB降解PTA废水实验中也取得了良好的COD去除效果,并且发现,废水中BA容易被厌氧菌降解掉,而TA、PT则难于降解,BA对TA、PT的降解存在抑制作用,而且与进水有机负荷有关。此外,也有研究人员将生物膜技术与IC反应器结合起来降解PTA废水,缩短反应器启动时间,经过稳定运行后,COD去除率可达到80%。然而,目前在PTA废水生物处理的研究中主要集中于反应器的运行效果和目标污染物的降解机理,关于污泥形态和微生物群落结构的报道[13]较少。而掌握这些内容又可以在微生物水平上掌握反应器的运行状况。因此,全面掌握系统运行效能与污泥形态和微生物群落结构的响应关系,对PTA废水处理具有重要意义。本实验采用UASB反应器处理PTA废水,培养厌氧颗粒污泥,研究废水处理效果、颗粒污泥的形态及其产甲烷活性及群落结构,为PTA废水处理应用提供参考。其中前者为厌氧发酵过程中常见的厌氧产氢菌, 而后者为典型的兼性厌氧菌.这两种菌落的富集也进一步证实了气水比的降低对溶解氧在生物膜中的传递产生了不利的影响.

翻墙VPN加速器

VPN代理

翻墙回国VPN